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1 Introduction

Facial emotion recognition (FER) refers to the au-
tomatic inference of human affective states—such
as happiness, fear, anger, or disgust—from vi-
sual facial cues. It plays an important role in
human–computer interaction, with applications in
areas such as adaptive user interfaces, digital ad-
vertising, education, and healthcare monitoring
(Fasel and Luettin, 2003), (Abdat et al., 2011).
Over the past two decades, substantial progress
has been made in recognizing facial expressions
under controlled laboratory conditions, to the point
that many such scenarios are considered largely
solved (Sariyanidi et al., 2015). However, deploy-
ing FER systems “in the wild” remains challenging
due to large intra-class variation (changes in pose,
illumination, occlusion, and expression intensity)
and subtle inter-class differences between emotions
(Sariyanidi et al., 2015), (Mehendale, 2020).

With the advent of deep learning, Convolutional
Neural Networks (CNNs) have become the domi-
nant paradigm for FER, owing to their strong rep-
resentation learning capabilities and computational
efficiency (Jain et al., 2019), (Pramerdorfer and
Kampel, 2016). Building on early successes in
large-scale image recognition (Krizhevsky et al.,
2017), a wide range of CNN-based FER architec-
tures have been proposed, often tailored to handle
unconstrained facial images captured in naturalistic
environments (Jain et al., 2019), (Pramerdorfer and
Kampel, 2016). Among the benchmark datasets
used to compare such approaches, FER2013 has
emerged as one of the most widely adopted. It
contains 35,888 grayscale face images labeled with
seven emotion categories and is designed to cap-
ture many of the difficulties present in real-world
settings (Goodfellow et al., 2015). Human accu-
racy on FER2013 has been estimated to lie in the
mid-60% range (Goodfellow et al., 2015), and a
sequence of deep models has steadily pushed ma-

chine performance beyond this level (Pramerdorfer
and Kampel, 2016), (Khaireddin and Chen, 2021).

In recent work, VGG-style CNN architectures
combined with aggressive data augmentation and
careful hyperparameter tuning have achieved state-
of-the-art single-network accuracy on FER2013
(Khaireddin and Chen, 2021). Khaireddin and
Chen, in particular, report a VGGNet-based model
that reaches 73.28% test accuracy on FER2013
without using any additional training data, high-
lighting the impact of optimizer choice, learn-
ing rate scheduling, and fine-tuning strategies on
overall performance (Khaireddin and Chen, 2021).
Their results illustrate how methodical optimiza-
tion of the training pipeline can yield significant
gains over earlier CNN-based FER systems.

Despite these advances in accuracy, most
FER2013 studies focus primarily on aggregate met-
rics such as overall test accuracy, with compar-
atively little attention to how performance may
vary across demographic groups or other sensitive
subpopulations. Recent work in facial expression
recognition has begun to address this gap by explic-
itly quantifying how demographic imbalances and
stereotypes in large-scale FER datasets transfer to
trained models, revealing substantial demographic
dependent disparities in recall for systems trained
on AffectNet and FER+ (Dominguez-Catena et al.,
2022). Follow-up work further proposes a family of
demographic bias metrics and applies them across
multiple FER datasets, showing that representa-
tional and stereotypical biases are both widespread
at the dataset level and liable to propagate into the
models (Dominguez-Catena et al., 2023). In the
context of FER, these findings show that misclassi-
fication is not merely a matter of overall accuracy,
but can differentially affect demographic groups,
raising fairness and ethical concerns whenever such
systems are used in real world settings.

In this work, we adopt an operational notion of
fairness that is explicitly group-based. Concretely,



we say that an FER model is fairer when its perfor-
mance is more similar across demographic groups
defined by apparent race, gender, and age. We fo-
cus on outcome metrics such as accuracy and recall
computed separately for each demographic group
and emotion class, and we view large systematic
gaps in these quantities as evidence of unfair treat-
ment. In line with prior work on demographic bias
in FER (Dominguez-Catena et al., 2022, 2023), our
analysis is therefore concerned less with the abso-
lute value of the overall accuracy and more with
whether any particular race, gender, or age group
consistently receives worse predictions than others.

In this paper, we build directly on the VGG-
based FER2013 model of Khaireddin and Chen
(Khaireddin and Chen, 2021) to examine these is-
sues more closely. Our objectives are threefold.
First, we provide a structured summary of their
approach, clarifying the key design choices in data
preprocessing, augmentation, architecture, and op-
timization that contribute to its performance. Sec-
ond, we offer a critical analysis of their method-
ology and evaluation protocol, highlighting limi-
tations and open questions that are not fully ad-
dressed in the original work. Third, and most im-
portantly, we extend their evaluation framework
to investigate model behavior across different de-
mographic groups. By quantifying performance
disparities and potential biases, we aim to comple-
ment existing accuracy-focused benchmarks with a
fairness-aware perspective, showcasing FER2013
results not only in terms of how well the model
performs overall, but also in terms of for whom it
performs well for.

2 Summary of Findings

Khaireddin and Chen present one of the strongest
single-network baselines on FER2013 to date, us-
ing a VGG-style CNN combined with an aggres-
sively tuned training pipeline (Khaireddin and
Chen, 2021). Their architecture consists of four
convolutional stages with 3 × 3 filters and 2 × 2
max-pooling after each block, followed by three
fully connected layers for classification. Com-
pared to earlier VGG-based FER work, such as
Pramerdorfer and Kampel (Pramerdorfer and Kam-
pel, 2016), their variant includes an additional hid-
den fully connected layer and places dropout after
the fully connected layers rather than after each
convolutional block, increasing model capacity at
the classification head. On the data side, they

rely on an extensive augmentation pipeline: im-
ages are randomly scaled (up to ±20%), shifted
horizontally and vertically (up to ±20%), and ro-
tated (up to ±10◦), each transformation applied
with probability 50%. The augmented images are
then ten-cropped into 40×40 patches (four corners
and center plus their mirrored counterparts), with
random erasing applied to each crop with prob-
ability 50%, and pixel values normalized by di-
vision by 255. At test time, performance is re-
ported using ten-crop averaging. Trained for 300
epochs with stochastic gradient descent with Nes-
terov momentum and weight decay, combined with
a Reduce-on-Plateau learning rate scheduler and
a subsequent cosine-annealing fine-tuning phase,
their best model achieves 73.28% accuracy on
the FER2013 public test set, surpassing the pre-
viously reported single-network VGG baseline of
72.7% (Pramerdorfer and Kampel, 2016; Goodfel-
low et al., 2015). Saliency-map visualizations fur-
ther show that the network primarily attends to in-
ternal facial regions (eyes, eyebrows, mouth), while
largely downweighting hair and background, and
the confusion matrix indicates that “happiness” and
“surprise” are classified most accurately, whereas
“disgust” and “fear” remain the most challenging
(Khaireddin and Chen, 2021).

Complementary to this accuracy-focused line of
work, Dominguez-Catena et al. propose a metric-
based framework to quantify demographic bias
transfer from datasets to trained FER models
(Dominguez-Catena et al., 2022). Their analysis,
conducted on AffectNet and FER+, uses FairFace
as a proxy demographic classifier to obtain appar-
ent race and gender labels, and then defines three
families of metrics: a representational bias metric
based on the normalized standard deviation of de-
mographic group proportions (capturing whether
some groups are overrepresented or underrepre-
sented); a pair of stereotypical bias metrics based
on Normalized Mutual Information (NMI) and
Normalized Pointwise Mutual Information (NPMI)
between emotion labels and demographic groups
(capturing label–demographic associations); and a
model bias metric based on recall disparities across
demographic groups for each class, summarized as
an overall disparity score. Applied to AffectNet,
these metrics reveal a strong representational im-
balance toward subjects labeled as White, as well
as stereotypical gender patterns such as an overrep-
resentation of men in the “angry” class and women
in the “happy” class. Training VGG-style mod-



els on various balanced and artificially biased sub-
sets, they find that balancing the dataset by gender
substantially reduces gender-related disparity with
only minor accuracy changes, whereas balancing
by race does not significantly reduce race-related
model bias (Dominguez-Catena et al., 2022). They
also observe that increasing the total number of
training examples tends to reduce measured bias
scores, even when the underlying demographic dis-
tribution remains skewed.

In subsequent work, the same authors extend this
analysis to a broader collection of FER datasets
and refine their proposed metric suite (Dominguez-
Catena et al., 2023). They systematically eval-
uate representational bias, global stereotypical
bias, and local (class-specific) stereotypical bias
across multiple FER corpora, showing that demo-
graphic skew and label–demographic associations
are widespread and strongly dependent on the data
source. Their experiments further suggest that
many bias metrics are highly correlated, and they
recommend a compact set of measures focusing
on representational imbalance and global and local
stereotypical bias as a practical basis for dataset
auditing. Taken together, these findings provide
evidence that popular FER benchmarks can encode
substantial race and gender-related structure which,
if unaddressed, is likely to propagate into models.

Overall, the literature we draw on provides two
complementary perspectives. On the one hand,
VGG-based CNNs with carefully engineered aug-
mentation, optimization, and fine-tuning strate-
gies can achieve state-of-the-art performance on
FER2013 when evaluated solely in terms of over-
all accuracy (Pramerdorfer and Kampel, 2016;
Khaireddin and Chen, 2021). On the other hand,
recent work on demographic bias in FER datasets
and models demonstrates that such aggregate met-
rics can mask systematic disparities across demo-
graphic groups, and that dataset composition and
preprocessing choices play a central role in shaping
these disparities (Dominguez-Catena et al., 2022,
2023). Our project is positioned at the intersection
of these two strands: we take the high-performing
FER2013 VGG architecture of Khaireddin and
Chen as a starting point, and we adapt the bias-
analysis methodology of Dominguez-Catena et al.
to investigate how this model behaves across demo-
graphic subgroups, with the goal of jointly charac-
terizing its accuracy and fairness.

3 Critiques

Our project relies primarily on FER2013 as the core
benchmark and on the VGG-based architecture of
Khaireddin and Chen (Khaireddin and Chen, 2021),
so it is important to examine both the dataset and
the reference model critically. FER2013 itself is
designed as a challenging “in-the-wild” facial ex-
pression dataset, with low-resolution grayscale im-
ages collected from the web and labeled into seven
basic emotion categories (Goodfellow et al., 2015).
While this makes it suitable for stress-testing FER
models, it also introduces several limitations. First,
the dataset is known to contain noisy labels and am-
biguous expressions, as annotations were obtained
at scale and many images exhibit subtle or mixed
emotions. Second, the class distribution is imbal-
anced, with some emotions (e.g., “disgust”) being
markedly underrepresented, which can bias models
toward majority classes when trained with standard
cross-entropy objectives. Third, FER2013 does not
include any explicit demographic labels (e.g., age,
race, or gender), which complicates fairness analy-
sis: any demographic information must be inferred
using external models, introducing additional noise
and potential bias. Finally, FER2013 focuses on
seven “basic” emotions and does not capture more
nuanced or culturally specific affective expressions,
limiting the scope of conclusions about real-world
emotional communication.

The reference model of Khaireddin and Chen
(Khaireddin and Chen, 2021) also has several
methodological limitations when viewed from the
perspective of reproducibility and fairness. On the
positive side, the paper provides a clear high-level
description of the VGG architecture, data augmen-
tation pipeline, and training schedule. However,
many of the design choices are reported as a fixed
recipe without specific details of the components
and its relation to the outcome. For example, the
augmentation strategy combines scaling, shifting,
rotation, ten-crop evaluation, and random erasing,
each applied with a probability of 50%, but the
paper does not quantify how much each compo-
nent contributes to the final 73.28% accuracy. It is
therefore unclear whether all steps are necessary, or
whether a simpler augmentation scheme would per-
form comparably. Similarly, the authors train for
300 epochs with SGD with Nesterov momentum,
Reduce-on-Plateau learning rate scheduling, and
additional cosine-annealing fine-tuning, but there is
no analysis of convergence behavior or sensitivity



to training duration.
Reproducibility is further complicated by miss-

ing implementation details. The paper does not
report the random seeds used for initialization and
data augmentation, making exact replication of the
reported 73.28% result difficult. The ten-crop eval-
uation also implies an increase in effective test-time
computation and parameter usage (due to repeated
forward passes over multiple crops), yet the ex-
act number of parameters and the computational
cost are not reported, which hinders fair compari-
son with lighter architectures or real-time systems.
Moreover, while the confusion matrix and saliency
maps provide some interpretability, the evaluation
remains entirely focused on aggregate accuracy and
per-class performance, without any disaggregation
by demographic attributes or discussion of poten-
tial fairness issues. As a result, we cannot tell from
this work whether the performance gains benefit all
user groups equally, or whether some groups are
systematically disadvantaged.

The demographic bias framework of Dominguez-
Catena et al. (Dominguez-Catena et al., 2022, 2023)
also comes with important caveats that affect how
we can adapt it to FER2013. Their metrics require
demographic labels and thus rely on FairFace as
a proxy model to infer apparent race and gender.
While this is a pragmatic solution for unlabeled
FER datasets, it introduces several layers of approx-
imation: FairFace itself is imperfect and reflects its
own biases, gender is treated as a binary attribute,
and race is collapsed into a limited set of coarse cat-
egories. Any demographic analysis performed on
top of these predictions will therefore be influenced
by FairFace’s misclassifications and by the under-
lying normative choices about how to categorize
people. In addition, their work emphasizes that rep-
resentational bias (imbalanced group frequencies)
and stereotypical bias (label–demographic associa-
tions) are statistical properties of the dataset, not di-
rect measures of normative fairness. A dataset can
be demographically skewed without implying that
any particular deployment is unfair, and conversely,
even balanced datasets can yield unfair outcomes
if the model or decision context is problematic.

Finally, there is a mismatch between the datasets
and settings in which the bias metrics were
originally validated and our target benchmark.
Dominguez-Catena et al. focus on AffectNet and
FER+, which differ from FER2013 in resolu-
tion, label distributions, and collection procedures
(Dominguez-Catena et al., 2022, 2023). Their em-

pirical findings, such as race-related model bias
being relatively insensitive to dataset balancing,
while gender bias is more easily mitigated, may
not transfer directly to FER2013. Applying their
framework to our setting therefore requires addi-
tional thought: we must account for the lack of
ground-truth demographic labels, the small image
size and grayscale format, and the specific class
imbalances of FER2013. Our critiques highlight
that both the accuracy-oriented FER2013 literature
and the emerging demographic-bias analyses leave
important gaps. These gaps motivate our proposed
extension, in which we adapt the high-performing
FER2013 model of Khaireddin and Chen and eval-
uate it through a demographic lens, while being ex-
plicit about the limitations of the underlying dataset
and proxy demographic labels.

4 Proposed Extensions

Our primary extension is to take the high-
performing FER2013 VGG model of Khaireddin
and Chen (Khaireddin and Chen, 2021) and place it
within a fairness-aware evaluation pipeline. Archi-
tecturally, we do not introduce new hand-crafted
features or a separate feature-engineering stage: as
in the original work, the model is a purely con-
volutional VGG-style network that learns feature
representations end-to-end from raw pixels. To en-
sure comparability with their results, we reproduce
their data preprocessing and augmentation strategy
as closely as possible. Concretely, we use the offi-
cial FER2013 training, validation, and test splits;
apply random scaling (up to ±20%), horizontal
and vertical shifts (up to ±20%), and rotations
(up to ±10◦) during training, each with probability
50%; then perform ten-crop evaluation on 40× 40
patches at test time, with random erasing applied
to crops during training and all pixel intensities
normalized (e.g., by division by 255). The model is
trained for 300 epochs using stochastic gradient de-
scent with Nesterov momentum, weight decay, and
a Reduce-on-Plateau learning rate scheduler, op-
tionally followed by a short cosine-annealing fine-
tuning phase. This setup preserves the core archi-
tectural, optimization, and augmentation choices of
(Khaireddin and Chen, 2021), yielding a baseline
single-network accuracy on FER2013 that we can
compare both to their reported results and to our
subsequent fairness-aware analyses.

To incorporate demographic considerations, we
then augment FER2013 with proxy demographic la-



bels in a manner inspired by Dominguez-Catena et
al. (Dominguez-Catena et al., 2022, 2023). Specifi-
cally, we pass each face image through the Deep-
Face framework to obtain estimates of apparent
race, gender, and age. These attributes are not
treated as ground truth, but rather as noisy prox-
ies that enable group-level analysis on a dataset
that does not provide demographic metadata na-
tively. Once FER2013 has been annotated in this
way, we re-run the same VGG architecture on the
dataset, preserving all modeling and training hy-
perparameters and using the same simple prepro-
cessing (fixed resolution and normalization, with
no geometric augmentation or ten-crop evaluation).
The network is again trained for 300 epochs on the
original training split, and evaluation is performed
on the held-out test set in a single forward pass per
image. The key difference is that, in addition to re-
porting a single aggregate test accuracy, we stratify
the predictions by demographic group, computing
accuracy, recall, and confusion matrices separately
for each apparent race, gender, and age category.

Within this framework, fairness is assessed post
hoc by comparing outcome metrics across demo-
graphic groups. In line with our operational defini-
tion of fairness, we treat the model as fairer when
accuracy and recall are more similar across groups,
and we view large systematic gaps as evidence of
unfair treatment. Concretely, we plan to report
(i) per-group overall accuracy, (ii) per-group, per-
class recall, and (iii) simple disparity summaries
such as the difference between the best and worst
performing group for each emotion class. Where
appropriate, we also draw on the recall-disparity
style metrics proposed by Dominguez-Catena et
al. (Dominguez-Catena et al., 2022) to summarize
group differences into a single overall disparity
score. Because the architecture, training procedure,
and data splits are held fixed relative to (Khaired-
din and Chen, 2021), any observed disparities can
be attributed to interactions between the original
FER2013 data distribution and the VGG-based
model, rather than to changes in model design.

In summary, our proposed extension does not
attempt to redesign the FER model itself, but rather
to wrap an existing state-of-the-art FER2013 archi-
tecture in a demographic analysis layer. By first
replicating the original training setup and then strat-
ifying evaluation by apparent race, gender, and age,
we aim to answer a question that the original work
leaves open: not only how accurate the model is
on FER2013 overall, but how that accuracy is dis-

tributed across different demographic groups.

5 Proxy Demographic Annotation via
DeepFace

We encountered multiple difficulties using Fair-
Face in a reproducible and computationally sta-
ble manner (issues related to CUDA, dlib, and
pretrained model dependencies). To ensure that
a demographic analysis was still conducted, we
adopted DeepFace as an alternative.

Similar to FairFace, DeepFace is an open-source
facial analysis toolkit that integrates multiple pre-
trained CNNs for face detection and attribute in-
ference, including models for apparent gender,
race, and age estimation. For each image in the
FER2013, we used the tool to infer:

• Dominant apparent gender

• Dominant apparent race

To improve robustness and prevent failures from
breaking the process, labels were assigned in
batches of 1000 images, with intermediate results
written incrementally to the csv file. This al-
lowed recovering from crashes without losing large
chucks of data.

We emphasize that these demographic attributes
are not treated as ground truth, but as noisy proxy
labels derived from a separate model. They reflect
how another automated system categorizes indi-
viduals, not how individuals identify themselves.
Consequently, any fairness analysis presented in
this work should be interpreted as an audit of model
behavior under apparent demographic groupings,
rather than a claim about actual human populations.

6 Dataset Demographic Audit

Augmenting the dataset with demographic meta-
data also allowed us to analyze the dataset compo-
sition independently from any model predictions.
This makes it possible to distinguish dataset imbal-
ance from model-induced disparities.

6.1 Gender Distribution

FER2013 is demographically imbalanced with re-
spect to apparent gender. Approximately 61% are
classified as male and 39% female. This indicates
that male-presenting faces are substantially over-
represented, which may affect the patterns learned
during training and evaluation phases.



Figure 1: FER2013 gender distribution

6.2 Race Distribution

When it comes to race distribution, FER2013 is
also heavily skewed by apparent race. Images
classified as white constitute the dominant group
(61.7%), followed by Asian (19.8%), Black (6.3%),
Latino/Hispanic (6.2%), and Middle Eastern cat-
egories (6.0%), with the Indian category account-
ing for only a very small fraction of the dataset.
This imbalance in race distribution mirrors find-
ings reported for other public FER benchmarks
and reflects the lack of demographic control during
dataset construction.

Figure 2: FER2013 race distribution

6.3 Intersectional Distribution

Representation becomes even more uneven when
we consider race and gender together. In most
racial categories, male-presenting subjects domi-
nate, resulting in poor representation for non-white
women. This intersectional imbalance further lim-
its the coverage of the feature space across demo-
graphic subgroups.

These results confirm that FER2013 exhibits sub-
stantial representational bias before any modeling,
and that any fairness analysis must be interpreted
in the context of this underlying skew.

Figure 3: FER2013 joint distribution of race and gender

7 Methods and Experimental Setup

All models were implemented in PyTorch and
trained on the FER2013 dataset using the official
training, validation, and test splits.

7.1 Model Architecture
We implement a VGG-style convolutional neural
network following the design of Khaireddin and
Chen (Khaireddin and Chen, 2021), adapted to
FER2013 grayscale inputs and extended for fair-
ness analysis. The architecture consists of four
convolutional blocks, each comprising two 3 × 3
convolution layers followed by batch normaliza-
tion, ReLU activation, and 2× 2 max pooling.

The number of feature channels doubles at each
stage:

1 → 64 → 128 → 256 → 512.

After the final block, adaptive average pooling is
applied to produce a fixed 3× 3 output regardless
of input resolution. The resulting feature map is
flattened and passed through three fully connected
layers:

512 · 3 · 3 → 512 → 512 → 7,

where 7 corresponds to the number of emotion
categories in FER2013. ReLU nonlinearity is used
after the first two fully connected layers, followed
by dropout with probability p = 0.5. The final
layer outputs class logits that are passed to a cross-
entropy loss during training.

7.2 Data Preprocessing and Augmentation
FER2013 images are grayscale and provided at
a resolution of 48 × 48 pixels. All images are
converted to floating-point tensors and normalized



to the range [0, 1] by dividing pixel intensities by
255.

Training transforms. To improve robustness to
geometric variations, we apply stochastic data aug-
mentation during training:

• Random transformation (applied with proba-
bility 0.5) including:

– Rotation up to ±10◦,
– Horizontal and vertical translation up to
±20%,

– Scaling between 0.8 and 1.2.

• Random cropping to 40× 40 pixels,

• Random erasing with probability 0.5, to simu-
late occlusion.

Validation and test preprocessing. No augmen-
tation is applied during validation or testing. In-
stead, center cropping is used for validation, and
ten-crop evaluation is applied at test time. Ten
crops are extracted from each test image (four cor-
ners, center, and their mirrored versions), and pre-
dictions are averaged over all crops.

7.3 Training Configuration
The model is trained using stochastic gradient de-
scent (SGD) with Nesterov momentum under the
following configuration:

• Optimizer: SGD with Nesterov acceleration,

• Momentum: 0.9,

• Weight decay: 10−4,

• Initial learning rate: 0.01,

• Loss function: cross-entropy.

Training is performed for 300 epochs with batch
size 128. The model checkpoint achieving the high-
est validation accuracy is saved and used for final
testing.

7.4 Learning Rate Scheduling
We apply a Reduce-on-Plateau learning rate sched-
uler that monitors validation accuracy:

• Reduction factor: 0.75,

• Patience: 5 epochs,

• Mode: maximize validation accuracy.

When validation performance plateaus, the learn-
ing rate is reduced, improving convergence during
later training stages.

7.5 Evaluation

The final model is evaluated on the FER2013 pri-
vate test split using ten-crop inference. Predictions
across all crops are averaged to produce final prob-
ability estimates. We report:

• Overall test accuracy,

• Confusion matrix,

• Per-class recall.

8 Results and Fairness Evaluation

8.1 Confusion Matrix and Per-Class
Performance

Table 1 reports precision, recall, and F1-score for
each emotion class. The confusion matrix in Fig-
ure 4 visualizes common misclassification patterns.

Table 1: Per-class precision, recall, and F1-score on
FER2013 test set

Emotion Precision Recall F1-score Support
Angry 0.662 0.654 0.658 491
Disgust 0.906 0.527 0.667 55
Fear 0.631 0.519 0.570 528
Happy 0.894 0.906 0.900 879
Sad 0.569 0.643 0.604 594
Surprise 0.840 0.832 0.836 416
Neutral 0.689 0.732 0.710 626
Accuracy 0.7261
Macro Avg 0.742 0.687 0.706 –
Weighted Avg 0.728 0.726 0.725 –

Figure 4: Confusion matrix for FER2013 test set predic-
tions

The model achieves its highest performance on
the “happy” class, with recall exceeding 90%, fol-
lowed by “surprise” at over 83%. These expres-
sions exhibit strong and consistent facial cues (e.g.,
smiles, open mouth, raised eyebrows), making
them easier to distinguish.



The most challenging emotions are “fear” and
“disgust”, with recall near 52%. In the case of “dis-
gust”, this is largely attributable to severe class im-
balance (only 55 examples in the test set). “Fear” is
frequently confused with “surprise” and “sad”, re-
flecting overlapping facial features such as widened
eyes and raised brows. Similarly, “sad” is often con-
fused with “neutral”, which is a common issue in
FER models due to subtle expression differences.

Overall, the confusion matrix shows that errors
are not uniformly distributed across classes. In-
stead, misclassifications are concentrated among
visually similar emotions, which indicates that the
model learns meaningful structure rather than mak-
ing arbitrary mistakes.

These trends are consistent with prior work on
FER2013 and the baseline reported by Khaireddin
and Chen (Khaireddin and Chen, 2021), confirm-
ing that the trained model exhibits realistic and
interpretable error behavior.

8.2 Overall FER Performance
The VGG-based model trained in this work
achieves an overall test accuracy of 72.61% on the
FER2013 private test split. This is within 0.7 per-
centage points of the 73.28% reported by Khaired-
din and Chen (Khaireddin and Chen, 2021), indicat-
ing that our reimplementation successfully repro-
duces a strong baseline while enabling additional
fairness analyses.

The per-class performance follows common pat-
terns observed in prior work. “Happy” and “sur-
prise” attain the highest recall, whereas “disgust”
and “fear” remain the most challenging classes.
Negative emotions such as “fear” and “sad” are
frequently confused with each other, while “happy”
is rarely misclassified.

8.3 Performance by Apparent Gender
Table 2 reports the number of test examples and
corresponding accuracy for each group.

Table 2: Accuracy by apparent gender on the FER2013
test set.

Group # Samples Accuracy
Man 2192 69.89%
Woman 1397 76.88%

Overall accuracy is approximately 7 percentage
points higher for women than for men. However,
recall averaged over emotion classes is very simi-
lar (67.61% for men vs. 68.67% for women), and

the average per-class recall disparity between gen-
ders is 6.8 percentage points. This suggests that
both gender groups are “seen” by the model to
a comparable degree, but that the distribution of
errors across classes is not identical. From a fair-
ness perspective, the model is not gender-neutral:
women benefit from consistently higher accuracy,
even though men are more prevalent in the dataset.

8.4 Performance by Apparent Race
Table 3 shows the corresponding breakdown by
apparent race. We consider six racial categories
predicted by DeepFace. It is important to note that
the Indian group is reported for completeness but
contains relatively few examples.

Table 3: Accuracy by apparent race on the FER2013
test set.

Group # Samples Accuracy
Asian 745 75.57%
Black 219 73.97%
Indian 36 66.67%
Latino/Hispanic 238 68.49%
Middle Eastern 197 73.10%
White 2154 71.96%

The maximum difference in accuracy between
racial groups is roughly 8.9 percentage points, with
Asian-presenting faces achieving the highest ac-
curacy (75.57%) and Indian-presenting faces the
lowest (66.67%). As stated previously, since the
Indian group is small (n = 36), these numbers
should be interpreted with caution. Even when
focusing on the better-represented racial groups,
however, we observe several percentage points
of variation: Black and Middle Eastern subjects
achieve higher accuracy than White subjects, while
Latino/Hispanic faces perform somewhat worse.

These results indicate that the model’s behav-
ior is sensitive to apparent race. Performance is
not uniformly higher for majority groups. Instead,
several minority groups outperform whites, while
others underperform. This pattern suggests that
demographic advantage is not determined solely
by representation frequency, but by more complex
interactions between data distribution and learned
representations.

8.5 Summary of Disparities
From a fairness perspective, FER2013 and the
VGG-based model exhibit both dataset-level and
model-level disparities. At the dataset level, male



and white-presenting faces are overrepresented.
At the model level, accuracy differs by approxi-
mately 7 percentage points between apparent gen-
ders and by up to 8.9 percentage points between
racial groups. Although recall is nearly identical for
men and women, indicating similar detection rates,
the residual accuracy and class-wise recall gaps
show that error patterns remain demographically
structured. These results show that high overall
accuracy can hide meaningful differences in how
the model performs across demographic groups.

9 Conclusion

In this work, we reproduced a high-performing
VGG-based facial emotion recognition model
on the FER2013 benchmark and extended its
evaluation beyond aggregate accuracy to include
a demographic fairness analysis. Our imple-
mentation achieved an overall test accuracy of
72.61%, closely matching the state-of-the-art
single-network performance reported by Khaired-
din and Chen (Khaireddin and Chen, 2021). This
confirms that the model architecture and training
procedure generalize well and provides a reliable
foundation for subsequent fairness evaluation.

To enable demographic analysis on a dataset that
lacks ground-truth demographic labels, we aug-
mented FER2013 with proxy labels for apparent
race and gender using DeepFace. Although these
labels do not represent true identities, they allow
for a practical audit of model behavior under appar-
ent demographic groupings. In addition to that, we
conducted a dataset-level audit and found substan-
tial representational imbalance: male-presenting
and white-presenting faces are overrepresented,
while non-white women are particularly underrep-
resented. This confirms that demographic skew is
already present at the dataset level, independently
of any model training.

The model evaluation revealed disparities in per-
formance across demographic groups. Accuracy
differed by approximately 7 percentage points be-
tween apparent genders and by up to 8.9 percentage
points across racial groups. Interestingly, these dis-
parities did not correspond to a simple majority ad-
vantage: in several cases, minority groups achieved
higher accuracy than the majority group, indicating
that bias does not arise solely from data frequency
but from more complex interactions between repre-
sentation quality and learned features. While recall
for men and women was nearly identical, suggest-

ing comparable detection rates, the residual differ-
ences in accuracy and classwise recall indicate that
errors remain systematically structured.

These findings demonstrate that high overall per-
formance does not guarantee equitable behavior. A
model that appears successful in aggregate can still
exhibit uneven performance across demographic
groups, raising concerns for real-world deployment
in social, educational, or clinical contexts. Our
results reinforce the argument that fairness analy-
sis should be treated as a standard component of
model evaluation rather than an optional add-on.

This study has several limitations. Demographic
labels were inferred using a secondary model and
therefore reflect algorithmic categorization rather
than self-identified attributes. Additionally, inter-
sectional evaluations were constrained by small
subgroup sizes, impacting statistical reliability for
underrepresented populations. Future work should
prioritize datasets with explicit demographic anno-
tation, and incorporate uncertainty-aware labelling.

In conclusion, this work demonstrates that state-
of-the-art FER performance can coexist with demo-
graphic disparity. By combining model replication,
dataset auditing, and fairness evaluation within a
single framework, this project highlights the ne-
cessity of broadening evaluation standards beyond
accuracy alone, and contributes to a more responsi-
ble and transparent understanding of facial emotion
recognition systems.
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